Research Group of Prof. Dr. M. Griebel
Institute for Numerical Simulation
maximize
next up previous
Next: About this document ... Up: ghbmg-cd Previous: Concluding remarks

Bibliography

1
R. E. Alcouffe, A. Brandt, J. E. Dendy and J. W. Painter.
The multi-grid method for the diffusion equation with strongly discontinuous coefficients.
SIAM J. Sci. Comput., 2:430-454, 1981.

2
O. Axelsson and P. Vassilevski.
Algebraic multilevel preconditioning methods. I.
Numer. Math., 56:157-177, 1989.

3
O. Axelsson and P. Vassilevski.
Algebraic multilevel preconditioning methods. II.
SIAM J. Numer. Anal., 27:1569-1590, 1990.

4
R. E. Bank.
Hierarchical bases and the finite element method.
Acta Numerica, 5:1-43, 1996.

5
R. E. Bank and M. Benbourenane.
The hierarchical basis multigrid method for convection-diffusion equations.
Numer. Math., 61:7-37, 1992.

6
R. E. Bank and S. Gutsch.
Hierarchical basis for the convection-diffusion equation on unstructured meshes.
In P. Bjørstad, M. Espedal and D. Keyes, editors, Ninth International Conference on Domain Decomposition Methods, 1998.

7
R. E. Bank and J. Xu.
The hierarchical basis multigrid method and incomplete lu decomposition.
In D. Keyes and J. Xu, editors, Seventh International Conference on Domain Decomposition Methods, 1994.

8
R. E. Bank, T. F. Dupont and H. Yserentant.
The hierarchical basis multigrid method.
Numer. Math., 52:427-458, 1988.

9
D. Braess.
Finite Elemente.
Springer, Berlin, Heidelberg, New York, 1992.

10
W. L. Briggs, V. E. Henson and S. F. McCormick.
A Multigrid Tutorial.
SIAM, Phiadelphia, 2000.

11
J. M. Carnicer, W. Dahmen and J. M. Peña.
Local decomposition of refinable spaces.
Appl. Comput. Harm. Anal., 3:127-153, 1996.

12
T. F. Chan, W. P. Tang and W. L. Wan.
Wavelet sparse approximate inverse preconditioners.
BIT, 37:644-660, 1997.

13
A. Cohen and R. Masson.
Wavelet methods for second-order elliptic problems, preconditioning, and adaptivity.
SIAM J. Sci. Comput., 21:1006-1026, 1999.

14
W. Dahmen, S. Müller and T. Schlinkmann.
On a robust adaptive multigrid solver for convection-dominated problems.
Technical Report 171, RWTH Aachen, 1999.

15
J. E. Dendy.
Black box multigrid.
J. Comput. Phys., 48:366-386, 1982.

16
J. E. Dendy.
Black box multigrid for nonsymmetric problems.
Appl. Math. Comput., 13:261-283, 1983.

17
D. L. Gines, G. Beylkin and J. Dunn.
LU factorization of non-standard-forms and direct multiresolution solvers.
Technical Report 278, Program in Applied Mathematics, University of Colorado at Boulder, 1996.

18
M. Griebel.
Zur Lösung von Finite-Differenzen- und Finite-Element-Gleichungen mittels der Hierarchischen Transformations-Mehrgitter-Methode.
Technical Report 342/4/90 A, TU München, 1990.

19
M. Griebel.
Multilevel algorithms considered as iterative methods on semidefinite systems.
SIAM J. Sci. Comput., 15:547-565, 1994.

20
M. Griebel.
Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen.
Teubner, Stuttgart, 1994.

21
W. Hackbusch.
Multigrid-Methods and Applications.
Springer, Berlin, Heidelberg, New York, 1985.

22
W. Hackbusch.
Iterative Lösung großer schwachbesetzter Gleichungssysteme.
Teubner, Stuttgart, 1993.

23
P. W. Hemker, R. Kettler, P. Wesseling and P. M. de Zeeuw.
Multigrid methods: Development of fast solvers.
Appl. Math. Comput., 13:311-326, 1983.

24
F. Kiefer.
Multiskalen-Verfahren für Konvektions-Diffusions Probleme.
PhD thesis, University of Bonn, 2001.

25
S. Le Borne.
Multigrid Methods for Convection-Dominated Problems.
PhD thesis, University of Kiel, 1999.

26
P. Oswald.
Multilevel Finite Element Approximation.
B. G. Teubner, Stuttgart, 1994.

27
C. Pflaum.
Fast and Robust Multilevel Algorithms.
Habilitation, University of Würzburg, 1998.

28
C. Pflaum.
Robust convergence of multilevel algorithms for convection-diffusion equations.
SIAM J. Numer. Anal., 37:443-469, 2000.

29
A. Reusken.
On the approximate cyclic reduction preconditioner.
Technical Report 144, Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 1997.

30
A. Reusken.
Approximate cyclic reduction preconditioning.
In W. Hackbusch and G. Wittum, editors, Multigrid Methods V, Lecture Notes in Computational Science and Engineering Vol. 3. Proceedings of the Fifth European Multigrid Conference, Springer, Berlin, Heidelberg, New York, 1998.

31
A. Reusken.
An algebraic multilevel preconditioner for symmetric positive definite and indefinite problems.
In A. Frommer, T. Lippert, B. Meldeke and K. Schilling, editors, Numerical Challenges in Lattice Quantum Chromodynamics, Lecture Notes in Computational Science and Engineering Vol. 15. Springer, Berlin, Heidelberg, New York, 2000.

32
A. Rieder, R. O. Wells and X. Zhou.
A wavelet approach to robust multilevel solvers for anisotropic elliptic problems.
Appl. Comput. Harm. Anal., 1:355-367, 1994.

33
H.-G. Roos, M. Stynes and L. Tobiska.
Numerical Methods for Singularly Perturbed Equations.
Springer, Berlin, Heidelberg, New York, 1996.

34
J. W. Ruge and K. Stüben.
Algebraic multigrid.
In S. F. McCormick, editor, Multigrid Methods. SIAM, Phiadelphia, 1987.

35
Y. Saad.
Iterative Methods for Sparse Linear Systems.
PWS Publishing, Boston, 1996.

36
K. Stüben.
Algebraic multigrid (AMG): An introduction with applications.
Technical Report 53, GMD-Forschungszentrum Informationstechnik GmbH, St. Augustin, 1999.

37
P. S. Vassilevski.
On two ways of stabilizing the hierarchical basis multilevel methods.
SIAM Rev., 39:18-53, 1997.

38
P. S. Vassilevski and J. Wang.
Stabilizing the hierachical basis by approximate wavelets. I: Theory.
Numer. Lin. Algebra Appl., 4:103-126, 1997.

39
P. S. Vassilevski and J. Wang.
Wavelet-like methods in the design of efficient multilevel preconditioners for elliptic PDEs.
In W. Dahmen, A. Kurdila and P. Oswald, editors, Multiscale Wavelet Methods, Wavelet Analysis and its Applications Vol. 15. Academic Press, San Diego, 1997.

40
P. S. Vassilevski and J. Wang.
Stabilizing the hierachical basis by approximate wavelets, II: Implementation and numerical results.
SIAM J. Sci. Comput., 20:490-514, 1998.

41
H. Yserentant.
On the multi-level splitting of finite element spaces.
Numer. Math., 49:379-412, 1986.

42
P. M. de Zeeuw.
Matrix-dependent prolongations and restrictions in a black-box multigrid solver.
J. Comput. Appl. Math., 33:1-27, 1990.

43
P. M. de Zeeuw.
Acceleration of Iterative Methods by Coarse Grid Corrections.
PhD thesis, University of Amsterdam, 1997.



Frank Kiefer
2001-10-25