Research Group of Prof. Dr. M. Griebel
Institute for Numerical Simulation
maximize


@inbook{Griebel.Schiekofer:1999*1,
  author = {M. Griebel and T. Schiekofer},
  title = {{PAR-CVD}: {E}ntwicklung leistungsf\"{a}higer paralleler
		  {B}erechnungsverfahren zur {U}ntersuchung und {O}ptimierung
		  von {CVD}-{P}rozessen},
  pages = {53--96},
  year = {1999},
  chapter = {7, Effiziente {A}lgorithmen auf d\"{u}nnen {G}ittern},
  series = {Berichte aus der Str\"{o}mungsmechanik},
  address = {Aachen},
  publisher = {Shaker},
  note = {L. Kadinski (ed.)},
  annote = {series,CVD},
  abstract = {Im Rahmen des Verbundprojektes PAR-CVD erfolgte die
		  Entwicklung von mathematischen Modellen, effizienten
		  numerischen Techniken und Software zur Untersuchung und
		  Prozessoptimierung des Halbleiterschichtwachstums von
		  Ga$_{1-x}$Al$_{x}$As, Ga$_{1-x}$In$_{x}$P und
		  In$_{1-x}$Ga$_{x}$N durch metallorganische
		  Gasphasenepitaxie (engl. Metal Organic Vapour Phase
		  Epitaxie, MOVPE). Die MOVPE ist ein Verarbeitungsschritt in
		  der Halbleiterprozesstechnik von
		  III-V-Verbindungs\-halbleitern, auf deren Grundlage
		  elektronische und optoelektronische Bauelemente hergestellt
		  werden. Das Prozessmodell f\"ur die Simulation der MOVPE
		  basiert auf der mathematischen Beschreibung der
		  Gasstr\"omung f\"ur den MOVPE-Reaktor, gekoppelt mit
		  W\"arme\"ubergang einschliesslich thermischer Strahlung und
		  Mehrkomponentenstofftransport mit Thermodiffusion und
		  homogenen und heterogenen chemischen Reaktionen. \\ Das
		  numerische Modell wurde f\"ur die Prozess- und
		  Reaktoroptimierung in linearen Horizontalreaktoren und
		  industriellen radialsymmetrischen Mehrscheibenreaktoren
		  (Planetenreaktor) angewandt. Zur Modellvalidierung der
		  numerischen Rechenergebnisse wurden gezielte
		  Tem\-pe\-ra\-tur-- und Wachstumsratenmessungen
		  durchgef\"uhrt. \\ Zur Beschleunigung des numerischen
		  Verfahrens wurden d\"unne Gitter verwendet, die erheblich
		  weniger Gitterpunkte ben\"otigen als konventionelle volle
		  Gitter und damit einen wesentlich geringeren Rechenaufwand
		  aufweisen. Dabei verschlechtert sich der Fehler bei
		  Verwendung von d\"unnen Gittern beispielsweise beim
		  Interpolanten nur um einen logarithmischen Term im Fall der
		  Maximumsnorm und der $L_{2}$--Norm, im Fall der Energienorm
		  ist die Ordnung des Fehlers des Interpolanten auf beiden
		  Gittern von derselben Ordnung. Bedingt durch die
		  hierarchische Basis (Tensorprodukt-Basis), die dem d\"unnen
		  Gitter zugrundeliegt, ist der entstehende
		  D\"unn--Gitter--L\"oser vollst\"andig adaptiv. Die
		  auftretenden Gleichungen werden auf den d\"unnen Gittern
		  mit der Methode der Finiten Differenzen diskretisiert. Die
		  hierbei verwendete Datenstruktur ist eine Hash-Tabelle, mit
		  der auf nat\"urliche Art und Weise sowohl hierarchische als
		  auch direkte Nachbarschaftsverh\"altnisse einfach
		  realisierbar sind. Zudem unterst\"utzt die verwendete
		  Datenstruktur adaptive Vorgehensweisen, mit deren Hilfe
		  problematische Stellen in den mathematischen L\"osungen
		  genauer dargestellt werden k\"onnen. \\ Das eingesetzte
		  numerische Verfahren wurde zur weiteren Verringerung der
		  Rechenzeit parallelisiert. Dabei wurde f\"ur die gesamte
		  Bibliothek von D\"unngitteroperatoren, die Grundlage zur
		  Konstruktion und L\"osung der in diesem Projekt anfallenden
		  Differentialgleichungssysteme ist, ein auf
		  Leichtsgewichtsprozessen \"uber gemeinsamen Speicher
		  basierendes Parallelisierungskonzept entworfen und
		  implementiert. Der dabei verwendete und auf nahezu allen
		  Rechensystemen mit gemeinsamen Speicher verf\"ugbare
		  Programmierstandard POSIX Threads (Pthreads) bietet sowohl
		  Plattformunabh\"angigkeit als auch
		  Herstellerunterst\"utzung. Durch die Entwicklung und
		  Anwendung eines Benchmarks f\"ur Pthreads konnten die
		  Leistungsmessungen vergleichend bewertet und weiter
		  optimiert werden. Die Performanz und gute Skalierbarkeit
		  des Verfahrens konnte abschliessend auf einem grossen
		  symmetrischen Multiprozessor unter Beweis gestellt werden. }
}