Research Group of Prof. Dr. M. Griebel
Institute for Numerical Simulation
maximize

Publications of Dr. Alexander RĆ¼ttgers:

[1] A. Rüttgers and M. Griebel. Multiscale simulation of polymeric fluids using the sparse grid combination technique. Applied Mathematics and Computation, 319:425-443, 2018. also available as INS Preprint No. 1623.
bib | http | .pdf 1 ]
[2] A. Rüttgers. Multiscale Simulation of Polymeric Fluids using Sparse Grids. Dissertation, Institut für Numerische Simulation, Universität Bonn, 2016.
bib | .pdf (link) ]
[3] A. Rüttgers, M. Griebel, L. Pastrik, H. Schmied, D. Wittmann, A. Scherrieble, A. Dinkelmann, and T. Stegmaier. Simulation of the oil storage process in the scopa of specialized bees. Computers & Fluids, 119:115-130, 2015. also available as INS Preprint No. 1404.
bib | http | .pdf 1 ]
[4] J. Adelsberger, P. Esser, M. Griebel, S. Groß, M. Klitz, and A. Rüttgers. 3D incompressible two-phase flow benchmark computations for rising droplets. 2014. Proceedings of the 11th World Congress on Computational Mechanics (WCCM XI), Barcelona, Spain, also available as INS Preprint No. 1401 and as IGPM Preprint No. 393.
bib | http | http | .pdf 1 ]
[5] M. Griebel and A. Rüttgers. Simulation of dilute polymeric fluids in a three-dimensional contraction using a multiscale FENE model. volume 1593 of AIP Conference Proceedings, pages 539-543, 2014. Proceedings of PPS-29: The 29th International Conference of the Polymer Processing Society, Nuremberg, Germany, also available as INS Preprint No. 1308.
bib | www: | .pdf 1 ]
[6] M. Griebel and A. Rüttgers. Multiscale simulations of three-dimensional viscoelastic flows in a square-square contraction. Journal of non-Newtonian Fluid Mechanics, 205:41-63, 2014. also available as INS Preprint No. 1313.
bib | http | .pdf 1 ]
[7] A. Rüttgers. Multiscale Modelling of Dilute Polymeric Fluids with Stochastic and Fokker-Planck-based Methods. Diplomarbeit, Institut für Numerische Simulation, Universität Bonn, 2010.
bib | .pdf 1 ]
[8] A. Rüttgers. Fehlerabschätzungen in der fast multipole method bei systemen mit periodischen randbedingungen. In M. Bolten, editor, Ergebnisse des Gaststudentenprogramms 2007 des John von Neumann-Instituts für Computing, Beiträge zum Wissenschaftlichen Rechnen, pages 107-121. Jülich Supercomputing Centre, 2007.
bib | http ]